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Abstract: We study the condensation of localized closed string tachyons on AdS orbifolds

both from the bulk and boundary theory viewpoints. We first extend the known results for

AdS5/Zk to AdS3/Zk case, and we proposed that the AdS3/Zk decays into AdS3/Zk′ with

k′ < k. From the bulk viewpoint, we obtain a time-dependent gravity solution describing

the decay of AdS orbifold numerically. From the dual gauge theory viewpoint, we calculated

the Casimir energies of gauge theory vacua and it is found that their values are exactly

the same as the masses of dual geometries, even though they are in different parameter

regimes of ’t Hooft coupling. We also consider AdS5 orbifold. The decay of AdS5/Zk is

dual to the transition between the dual gauge theory vacua on Rt × S3/Zk, parametrized

by different holonomies along the orbifolded spatial cycle. We constructed the instanton

solutions describing the transitions by making use of instanton solutions on Rt × S2.
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1. Introduction

Closed string tachyons are very important spectra in string theory since they signal the

decay of background space-time geometry into others, thus it is likely that these tachyon

condensations play crucial roles in quantum gravity. However, compared with the devel-

opments of open string tachyon condensation [1], the dynamics of closed string tachyon

condensation is not so well-understood, despite with the pioneer work done for the local-

ized closed string tachyon in ALE spaces [2].1 On the other hand, significant progresses

have been made on AdS/CFT correspondence [4], which gives a useful tool to understand

the nature of quantum gravity from the well-defined gauge theory point of view. Therefore,

we could expect to obtain a lot of insights by investigating the fate of localized closed string

tachyons if we embed them into asymptotically AdS spaces.

First let us recall the known results on the condensation of localized closed string

tachyon. For instance, superstrings on C/Zk were analyzed in [2], where the orbifold is

constructed as the two dimensional plane divided by the symmetry of 2π/k rotation. The

target space is a cone and closed strings can be localized at the tip of the cone. Suppose

we choose odd k and anti-periodic boundary conditions for fermions, then the spectrum of

closed strings includes no bulk tachyons but localized tachyons. An amazing conjecture was

given in [2] that a localized tachyon condensation leads C/Zk into C/Zk′ with odd k′ < k

and finally the system ends up with the stable supersymmetric flat vacuum. The conjecture

was confirmed by various ways, such as, D-brane probes, worldsheet RG-flow, and so on.

In particular, exact gravity solutions describing the decay of C/Zk were obtained in [5, 6].

1For a review, see, e.g., [3].
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In this paper we investigate the condensation of localized closed string tachyons in

superstring theory on AdSd+1/Zk with d = 2, 4, which is constructed by the d + 1 dimen-

sional AdS space with the identification of 2π/k rotation. The orbifold procedure gives rise

to a fixed point at the center, and we can construct systems with no bulk tachyons but

with tachyons localized at the fixed point by choosing proper spin structures as for C/Zk

case. Considering localized tachyon condensations in asymptotic AdS spaces, we can make

intriguing observations which cannot be seen for the cases of flat space orbifolds. Due to

the warped factor, the effect of closed string tachyons is localized around the fix point of

AdS orbifold, and hence the back-reaction by tachyons induces only normalizable modes

but not non-normalizable modes. This implies that the localized tachyon condensation

changes only bulk physics but not the boundary conditions. This should be compared to

the C/Zk case, where the boundary conditions are altered through the tachyon conden-

sation. In fact, it was argued in [7] that the localized tachyon condensation of AdS5/Zk

deforms the geometry into so-called Eguchi-Hanson soliton [8, 9] with the same boundary

conditions as for the AdS orbifold. This fact is actually very important since in an asymp-

totically AdS space we can deal with all the geometries with the same boundary condition

at the same time. For instance, we can discuss the thermal phase structure of gravity

theory in AdS5/Zk [7].

Utilizing the AdS/CFT correspondence, we can discuss the condensation in terms of

dual gauge theory. In the global coordinates, the boundary of AdSd+1 is given by Rt×Sd−1,

where Rt and Sd−1 denote the time direction and the d − 1 dimensional sphere, respec-

tively. Since the orbifold action acts also on the boundary of AdSd+1, the dual gauge

theory is defined by the orbifold of gauge theory on Rt ×Sd−1. One of the important facts

for the orbifold gauge theory is that the theory has many vacua labeled by the holonomy

matrix along its non-trivial cycle. It is natural to propose that the condensation of local-

ized tachyon is dual to the assignment of non-trivial holonomy, because it is known that

the deformation by normalizable modes corresponds to giving expectation values to dual

operators. Notice that this is related to the fact that the localized tachyon condensation

does not change the boundary condition as mentioned before. In this way, we can analyze

the tachyon condensation in terms of dual gauge theory as a transition between different

vacua. In particular, the Casimir energies for the vacua of dual gauge theory on Rt × S3

were computed in [7], and it was found that they reproduce quite well the masses of dual

geometries.

One of the purpose of this paper is to extend the analysis on the localized tachyon

condensation of AdS5/Zk [7] into the case of AdS3/Zk. Up to now only the comparison

between the static geometries deformed by localized tachyon condensation and the vacua of

dual gauge theory has been done. So we would like to investigate the dynamics of localized

tachyon condensation both from the bulk and boundary points of view. In section 2 we

study the localized tachyon condensation on AdS3/Zk with odd k. First we observe that

the geometry after the tachyon condensation is AdS3/Zk′ with odd k′ < k and the final

geometry is given by AdS3 without orbifolding. Next we study the decay of AdS3/Zk

following a dilaton pulse, which is induced by a localized tachyon condensation. We solve

numerically the Einstein-dilaton equations in order to obtain a time-dependent gravity

– 2 –
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solution describing the decay. The gauge theory dual to AdS3/Zk is defined on Rt×S1/Zk,

and the holonomy matrix along the spatial cycle leads to different vacua. The Casimir

energies for the vacua of the gauge theory are computed and exact matches are found

between the Casimir energies and the masses of dual geometries. In section 3 we first

review the result of [7], where it was discussed that AdS5/Zk decays into Eguchi-Hanson

solution [8, 9]. The dual gauge theory is defined on Rt × S3/Zk, and the vacua with

different holonomy correspond to the different geometries deformed by localized tachyon

condensation. In subsection 3.2 we construct instanton solutions of the orbifold gauge

theory on Rt × S3/Zk with the help of instanton solutions on Rt × S2 [15, 16]. The

instanton solutions interpolate different vacua, which are dual to the transitions between

different geometries.

2. Decay of AdS3/Zk

We start from extending the results of [7] into AdS3/Zk case. We find that the decay

process of AdS3/Zk is quite similar to the one of C/Zk, namely, AdS3/Zk decays into

AdS3/Zk′ with k′ < k and ends up with pure AdS3. Making use of this similarity, we

analyze in subsection 2.2 the dynamics of localized tachyon condensation. A localized

tachyon condensation leads to a dilaton pulse, which travels from the fixed point into the

AdS boundary. The back-reaction of this dilaton pulse induces the decay of AdS3/Zk into

AdS3/Zk′ with k′ < k. We try to find a time-dependent gravity solution describing the

decay in a numerical way. The boundary of AdS3/Zk is given by Rt ×S1/Zk, and the dual

gauge theory is defined on the boundary. In subsection 2.3 we define the dual gauge theory

and find the spectrum for various vacua with non-trivial holonomy. The Casimir energies

of the vacua are computed, and they are shown to match precisely with the masses of dual

geometries.

2.1 The deformed geometries after the tachyon condensation

Let us consider type IIB superstring theory on AdS3 ×S3 × T 4. In the global coordinates,

the metric of AdS3 is given by

ds2 =
dr2

g(r)
− g(r)dt2 + r2dθ2 , g(r) = 1 +

r2

l2
. (2.1)

The orbifold of AdS3 can be constructed from the identification of θ ∼ θ + 2π/k, which

gives rise to a fixed point at r = 0. Following the arguments of [2] on C/Zk, we can

construct the configuration with no bulk tachyons and only tachyons localized at r = 0

by assuming an odd integer k and anti-periodic boundary conditions for fermions. Here

we have used the fact that local properties do not depend on the curvature of AdS space.

From the experience of the flat orbifold case, it is natural to guess that the condensation of

localized tachyon deforms the orbifold AdS3/Zk into AdS3/Zk′ with odd k′ < k and finally

into the stable supersymmetric vacuum with AdS3.

It is very difficult to prove this conjecture since we do not fully understand the lo-

calized closed string tachyon. However, it is possible to obtain several supports for this
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conjecture if we utilize the properties of asymptotic AdS space. Suppose that the potential

of localized tachyonic modes has various minima at finite configurations. Then the tachyon

condensation leads to the deformation of normalizable modes, which ends up with a de-

formed geometry with the same boundary condition. In fact, we can show that AdS3/Zk

can be deformed into AdS3/Zk′ with odd k′ < k without changing the boundary behavior.

Moreover, we observe that the background mass decreases as k′ becomes small and the

smallest mass is given by AdS3 within the configurations with fixed boundary condition.

In order to describe the AdS3/Zk′ geometry with a fixed boundary condition, it is not

appropriate to use the metric (2.1) with the identification θ ∼ θ+2π/k′ since the boundary

condition manifestly depends on the choice of k′. Instead we use the following metric as

ds2 =
dr2

g(r)f(r)
− g(r)dt2 + r2f(r)dθ2 , g(r) = 1 +

r2

l2
, f(r) = 1 − a2

r2
. (2.2)

The period of θ is set as θ ∼ θ + 2π/k and the parameter a is related to k′(< k) as

a2 = l2
(

K2 − 1
)

, K =
k

k′
. (2.3)

Utilizing the coordinate transformation

r̃ =
1

K

√

r2 − a2 , t̃ = Kt , θ̃ = Kθ , (2.4)

we can indeed rewrite the above metric into the form of (2.1) with the periodicity θ̃ ∼
θ̃ + 2π/k′. The boundary behavior of the metric in the form (2.2) does not depend on the

parameter a(k′), therefore we can express all the orbifolds AdS3/Zk′ (k′ < k) with the same

boundary condition as for AdS3/Zk. Notice that k′ should be odd since only the case with

odd k′ is consistent with the anti-periodic conditions for fermions at the AdS boundary.

An advantage to embed into an AdS space is that the mass of geometry is well-defined in

an asymptotically AdS space. Utilizing this fact we can analyze the stability of geometries

by comparing the masses of geometry. Here we follow the methods developed in [10]. For

an asymptotically AdS space we can expand the metric for large r as

ds2 =
l2

r2
dr2 +

r2

l2
(−dt2 + l2dθ2) + δgµνdxµdxν , (2.5)

where δgµν contains the lower powers of r. Then the mass of geometry can be computed

by using the formula [10]

M =
1

8πG3

∫ 2π/k

0
dθ

(

r4

2l4
δgrr +

1

l2
δgθθ −

r

2l2
∂rδgθθ

)

(2.6)

with the three dimensional Newton constant G3. We find from the metric (2.2)

δgrr = − l4

r4

(

1 − a2

l2

)

, δgtt = −1 , δgθθ = −a2 , (2.7)

thus the mass of the geometry (2.2) is given by

M = − 1

8kG3

(

1 +
a2

l2

)

= − k

8k′2G3

. (2.8)
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From this mass formula, we can show that the mass of geometry is largest for the original

geometry with k′ = k and becomes smaller as we decrease k′. The final geometry should be

given by AdS3 with k′ = 1, which is stable since it has the smallest mass and no localized

tachyon. Furthermore, the supersymmetry is recovered in the final geometry.

2.2 Gravity solution describing the decay of AdS3/Zk

In the previous subsection, we have conjectured that the localized tachyon condensation

leads to the decay of the orbifold AdS3/Zk into AdS3/Zk′ (k′ < k) with a smaller deficit

angle. The dynamical process may be given as follows. Tachyons localized at the fixed

point could roll down the potential and reach to minima. The energy due to the tachyon

condensation would be carried out by a dilaton pulse from the center to the boundary of

the AdS orbifold. The dilaton pulse can serve as a moving domain wall, and the geometry

decays into AdS3/Zk′ (k′ < k) after the pulse passed away. For Rt × C/Zk this scenario

was conjectured in [2] and the exact gravity solution was found in [5, 6].

It is well known that it is difficult to analyze the condensation of closed string tachyon

in general, since the condensation changes the background itself and we do not know how

to deal with this case. An advantage to localize the tachyon is that the effects of tachyon

condensation are confined in a stringy regime, and hence we can safely use the classical

gravity description to describe the decay of the AdS orbifold for later time. As mentioned

above we assume that the effect of localized tachyon induces a dilaton pulse traveling from

the center to the AdS boundary. Thus now the problem is to find out the solution of

graviton-dilaton system corresponding to the decay of AdS orbifold with a dilaton pulse.

The action we consider for graviton and dilaton is

S =
1

16πG3

∫

d3x
√−g(R− 4∂µΦ∂µΦ − 2Λ) , (2.9)

where R is the Ricci scalar with respect to the metric gµν , and Φ is the dilaton field. The

determinant is denoted as g = det gµν , and the Ricci tensor will be represented as Rµν .

The negative cosmological constant is related as Λ = −1/l2 in eq. (2.1) and we fix it as

Λ = −1, i.e., l = 1 for a while.

From the action for graviton and dilaton, we can read off the equations of motion for

graviton as

Rµν − 1

2
Rgµν = 4

(

∂µΦ∂νΦ − 1

2
gµν(∂Φ)2

)

+ gµν (2.10)

and for dilaton as

1√−g
∂µ

√−ggµν∂νΦ = 0 . (2.11)

In order to solve the Einstein-dilaton equations, we set up an initial configuration at an

initial time t = 0, and follow the evolutions of metric and dilaton by solving these equations.

Since the (tµ) components of Einstein equations (2.10) contain only terms at most involving

first derivative with respective to time ∂t and contain no second or higher time derivatives,

– 5 –
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we treat these equations as constraint equations for initial data. This is because these

equations do not tell anything about time evolution. We treat the rest, spatial components

of Einstein equations, which involve second order time derivatives, as dynamical evolution

equations.

Since some components of Einstein equations are treated as constraint equations, now

the number of differential equations is smaller than that of degrees of freedom. Therefore,

we have to remove several components of metric by utilizing the diffeomorphism gauge

symmetry. We can always choose the metric in the form of

ds2 = e2F (t,r)(−dt2 + dr2) + C(t, r)2dθ2 , θ ∼ θ + 2π/k . (2.12)

Here we have removed θ-dependence of the metric by making use of the symmetry of the

system. The dilaton field is also set to be independent of θ. The conformal transformation

of (t, r) is a residual diffeomorphism which does not change the form of (2.12), and the

residual gauge can be fixed by assigning appropriate boundary conditions at r = 0 and

initial configuration at the initial time t = 0.

In terms of the metric form (2.12), the geometries before and after the tachyon con-

densation are given as follows. The metric of the initial geometry AdS3/Zk is

ds2 =
1

cos2 r
(−dt2 + dr2) + tan2 rdθ2 , (2.13)

which is obtained by replacing r of (2.1) with r̃ by coordinate transformation r = tan r̃

and rewriting r̃ → r. In this coordinate system, the AdS boundary is located at r = π/2.

After the tachyon condensation the geometry is proposed to be AdS3/Zk′ , whose metric

can be written as

ds2 =
1

cos2 r
(−dt2 + dr2) + K2 tan2 rdθ2 (2.14)

with K = k/k′ as before. Actually it is convenient for the later purpose to rewrite as

ds2 =
1

K2 cos2(r/K)
(−dt2 + dr2) + K2 tan2(r/K)dθ2 (2.15)

by rescaling coordinates as t → t/K, r → r/K. If we take r → 0 limit, then the metric

reduces to the one used in [2] for C/Zk. As a result, comparison to C/Zk is more manifest

in this metric, even though the radial boundary is shifted along the tachyon condensation

from r = π/2 to r = Kπ/2.

Let us write down the explicit form of equations of motion by using the metric (2.12).

The constraint equations arise from (tt), (tr) components of Einstein equations (2.10) as

∂rF∂rH − (∂rH)2 − ∂2
r H + ∂tF∂tH − 2(∂tΦ)2 − 2(∂rΦ)2 + e2F = 0 ,

∂rH(∂tF − ∂tH) + ∂rF∂tH − ∂t∂rH − 4∂tΦ∂rΦ = 0 , (2.16)

which do not include second derivatives at it should be the case. Here we have used

H(t, r) = log C(t, r) such that the equations become simpler. Note that the (tθ) component

is empty due to the θ-independence. We will use below these equations to set up initial

– 6 –
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configurations and to check the reliability of our computation. The non-trivial parts of

evolution equations come from (rr) and (θθ) components as

∂tF∂tH + ∂rF∂rH − (∂tH)2 − ∂2
t H − 2(∂tΦ)2 − 2(∂rΦ)2 − e2F = 0 ,

(∂2
t − ∂2

r )F − e2F − 2(∂tΦ)2 + 2(∂rΦ)2 = 0 . (2.17)

It is possible to solve these equations directly, but it might be useful take a linear com-

bination of Einstein equations to make the equations simpler. Notice that the Einstein

equations can be reduced to a simpler form in this case as

Rµν + 2gµν = 4∂µΦ∂νΦ . (2.18)

We pick up (tt) + (rr) and (θθ) components as evolution equations

2∆F + ∆H + ∇H · ∇H − 4e2F + 4∇Φ · ∇Φ = 0 ,

∆H + ∇H · ∇H − 2e2F = 0 , (2.19)

where we have used ∆ = −∂2
t +∂2

r and ∇f ·∇f = −∂tf∂tf +∂rf∂rf . In particular, there is

no dependence of dilaton in the (θθ) component. In this notation, the equation of motion

for dilaton is written as

∆Φ + ∇H · ∇Φ = 0 . (2.20)

In the following we will try to solve the three evolution equations (2.19) and (2.20) for

three unknowns F (t, r), C(t, r),Φ(t, r). In fact, this is equivalent to solve (2.17) and (2.20)

since we have just picked up a specific linear combination.

In order to solve the evolution equations we have to set up boundary conditions2 at

the center r = 0 and an initial configuration at t = 0. At r = 0 we set C = 0 since the

cycle of θ should shrink at r = 0. Then the regularity of (2.20) requires the Neumann

boundary condition as ∂rΦ = 0 at r = 0. We also assign ∂rF = 0 at r = 0, which follows

the regularity of (2.17). This condition should be related to the regularity of (2.19) since

we have just picked up a linear combination. Now that we are trying to solve second

order differential equations for three unknowns, we should assign 6 initial conditions for

F,C,Φ and ∂tF, ∂tC, ∂tΦ at t = 0. At the initial time we have argued that the tachyon

condensation makes a dilaton pulse, which should be determined from the string theory

computation in principle. Since it is a rather hard task, we simply assume that the localized

tachyon induces a static dilaton pulse with the Gaussian form as

Φ(t = 0, r) = Φ0 exp(−r2/∆) , ∂tΦ(t = 0, r) = 0 . (2.21)

The normalisation Φ0 and the width
√

∆ of the pulse should be related to the localized

tachyon condensation and therefore to the decay process. We also assume that the decay

2Boundary conditions at the AdS boundary are tricky since the radial boundary shifts as tachyon con-

denses. In spite of this fact, we set the Dirichlet boundary conditions for F, C, Φ at r = π/2. This choice

is reliable only when we follow the evolution before the dilaton pulse reaches to the boundary as below.

– 7 –
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starts from a static configuration and hence we set ∂tF = ∂tC = 0 at t = 0. The other

intimal conditions are for F and C at t = 0. Due to the assumption of static initial

configuration, the second equation of (2.16) vanishes. Therefore, once we fix one of the

initial conditions, then the other is determined from the first constraint equation. We fix

it from the flat space limit. Near r = 0 we can neglect the cosmological constant, thus the

change of metric can be close to the one in [5, 6]. They fix C = r, independent of dilaton

pulse, with the help of the residual diffeomorphism, thus we may set C = tan r at t = 0.

Then F at t = 0 is determined by solving the first constraint equation. Because of this

choice of initial configuration, we expect that the decay of AdS3/Zk is closed to the one of

C/Zk at least near r = 0. In particular, the metric of the final geometry should be given

as in (2.15).

Right now we have sufficient boundary conditions to solve the three evolution equa-

tions (2.19) and (2.20). Unfortunately we cannot find analytic solutions to these equations,

therefore we try to solve them in a numerical way. The result is summarized in figure 1,

and the constraint equations (2.16) are checked numerically. We interpret the result as

follows. The function C changes very little during the decay process, which is consistent

with the assumption of initial condition. Since the equation of motion for dilaton depends

only on C but not on F , the dilaton pulse is almost the same as in the static AdS orbifold.

The most important information should be read off from the behavior of F . We can see

that the value of F decreases after the dilaton pulse passed away. This is consistent with

the expectation of (2.15) that F changes as F → F − log K for small r by the tachyon con-

densation. In this way, at least until dilaton pulse reaches the boundary, we have checked

numerically that the evolution of tachyon condensation is consistent with the proposal that

AdS3/Zk decays into AdS3/Zk′ with k′ < k.

2.3 Dual gauge theory description

The AdS/CFT correspondence relevant for this case may be deduced from the near horizon

limit of D1/D5 system [4]. We wrap N5 D5-branes over a small T 4, which gives string-like

objects in (1+5) dimensional space-time. We put N1 D1-branes on the top of the string-like

objects, then the near horizon limit of the D1/D5 system gives rise to closed superstrings

on AdS3×S3 (×T 4). The dual gauge theory could be described by the low energy effective

action on the worldvolume of the D1/D5 system. For the dual of the orbifold AdS3/Zk, we

should consider the orbifold of the worldvolume theory defined on its boundary Rt×S1/Zk.

In this subsection we restrict ourselves to large N1, N5 and zero ’t Hooft coupling

limit. The radius of S1 is related to the AdS radius as R = l, which may be read from

the asymptotic behavior of the metric (2.5). In order to make the ’t Hooft coupling small,

we have to consider the case with a small radius R. If we take the IR limit or the large

radius limit, then the gauge theory description is not valid anymore due to the large ’t

Hooft coupling, and conformal field theory description should be adopted.

Two ends of open strings can be attached to either of D1-brane or D5-brane. From the

open strings between the same D-brane, we obtain U(N1) and U(N5) gauge fields in the low

energy limit. In (1+1) dimension, almost all the degrees of freedom can be gauged away

and only the zero modes are left. The zero modes of gauge fields induce the holonomies

– 8 –
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Figure 1: The 3D plots of the solutions F, C, Φ to the evolution equations (2.19) and (2.20). The

right hand sides are the contour plots. In the numerical computation we have set Φ0 = 0.4 and

∆ = 0.1 in (2.21). The function C changes very little during the process, and the dilaton Φ travels

as in the static AdS orbifold. The function F decreases after the dilaton pulse passed away, which

is consistent with the conjecture of localized tachyon condensation.

V1 for U(N1) and V5 for U(N5) along S1/Zk spatial cycle, and the choice of holonomies

labels the vacua of the theory. For the open strings between D1 and D5-branes, we can find

from some computations that the low energy spectrum includes 4 bi-fundamental scalers

and 4 bi-fundamental fermions with respect to the U(N1) × U(N5) gauge symmetry (see,

e.g., [11]). We use odd k and assign anti-periodic boundary conditions for fermions along

the spatial cycle.
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In order to classify the possible vacua of the orbifold gauge theory, we have to find

out which holonomies could be taken. If we consider the gauge theory on the covering

space, then only the trivial holonomies along the spatial cycle are allowed. This can be

understood as follows. Consider a two dimensional U(N) gauge theory on a 2-torus T 2

and a holonomy matrix along its thermal cycle. Then for large N limit the eigenvalues

of holonomy matrix are uniformly distributed at low temperature and collapsed at high

temperature. In particular, in the infinite temperature limit, the density of eigenvalue

becomes delta-functional. For example, see [12]. Thus holonomies along thermal cycle are

trivial in the infinite temperature limit. But from the modular invariance, this means that

holonomies along the spatial cycle are trivial in the zero temperature limit. Therefore, we

have the conditions V k
1 = 1 and V k

5 = 1 for the orbifold gauge theory as in the case of

Rt × S3/Zk [13]. Utilizing the gauge symmetry we can set V1 and V5 in the form of

diag(1, · · · 1, ω, · · · , ω, · · ·ωk−1, · · · , ωk−1) , ω = exp
2πi

k
. (2.22)

In other words, the vacua are labeled by the 2k integer numbers (n1
0, · · · , n1

k−1) and

(n5
0, · · · , n5

k−1), where the numbers of ωI are denoted as n1
I and n5

I with
∑

I n1
I = N1

and
∑

I n5
I = N5.

Let us examine the spectrum of this orbifold gauge theory. Due to the existence of

non-trivial holonomies, the gauge symmetry is broken to
∏

I U(n1
I) ×

∏

J U(n5
J) and the

states are in the bi-fundamental representation of this broken gauge symmetry. First we

consider a scalar in the (n1
I , n̄

5
J) bi-fundamental representation. The scalar can be expanded

by a plane wave as Φ
(I,J)
p ∼ eipθ, and the orbifold action g yields

g · Φ(I,J)
p = e

2πip

k ωI−JΦ(I,J)
p = e

2πi
k

(p+I−J)Φ(I,J)
p . (2.23)

Notice that the phase factor is shifted by the effect of holonomies. The orbifold invariant

states can be obtained by summing over all the images of the orbifold action. Thus the

projection operator is given by Γ =
∑k

I=1 gI , and the action of this operator restricts

the modes to p = kn + J − I with n ∈ Z. The spectrum of fermion in the (n1
I , n̄

5
J) bi-

fundamental representation can be obtained in the same way. Here we should remember

that k is an odd integer and the anti-periodic boundary condition is assigned. Thus the

orbifold action becomes

g · Ψ(I,J)
p = e

2πi
k

(p+I−J+k/2)Ψ(I,J)
p , (2.24)

where the shift of k/2 arises from the anti-periodic boundary condition. The projection

into the orbifold invariant subspace leads to the restriction p = k(n + 1/2) + J − I with

n ∈ Z.

Now that we know the spectrum of the orbifold theory for arbitrary holonomy matrices,

we can compute the Casimir energy, which is known to be dual to the mass of dual geometry.

The Casimir energy is given by

V0 =
1

2

∑

E

(−1)F EnE , E =
|p|
R

, (2.25)
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where F denotes the fermion number and nE represents the number of states with energy E.

For a scalar or a fermion in the (n1
I , n̄

5
J) bi-fundamental representation the number of modes

is n1
In

5
J and the energy is E = |kn + I − J |/R for a scalar and E = |k(n + 1/2) + I − J |/R

for a fermion. Since the orbifold gauge theory includes 4 scalars and 4 fermions, we obtain

V0 =
∑

I,J

n1
In

5
J

2R

(

4

∞
∑

n=−∞

|kn + I − J | − 4

∞
∑

n=−∞

|k(n + 1/2) + I − J |
)

. (2.26)

Using this formula, we can compute the Casimir energy for each vacuum with generic

holonomies.

We would like to find out the vacuum dual to AdS3/Zk′ with k′ ≤ k. The orbifold

AdS3/Zk′ has Zk′ symmetry, thus the holonomy matrices should respect this discrete sym-

metry. If we restrict ourselves to the case with integer K = k/k′, then we can choose

n1
mK = N1/k

′ and n5
mK = N5/k

′ with m = 0, 1, · · · k′−1 and zero for others.3 There might

be other choices of holonomies respecting the symmetry, but we can show that this choice

gives the smallest Casimir energy among them. In fact, the Casimir energy in this case is

computed as

V0 =
N1N5

Rk′2
k′

k′

∑

I=1

(

4

∞
∑

n=1

|kn + KI| − 4

∞
∑

n=1

|k(n + 1/2) + KI|
)

= − ck

12k′2R
(2.27)

with c = 6N1N5. In order to obtain this, it is useful to use the formula

∞
∑

n=1

(n − θ) =
1

24
− 1

8
(2θ − 1)2 . (2.28)

Using the relation c = 3l/(2G3) (see, e.g., [10]), the Casimir energy exactly matches the

mass of AdS3/Zk′ (2.8). Notice that we obtain the exact match contrary to the AdS5/Zk

case [7]. This could be another example showing that AdS3 cases are more stable under

quantum corrections than AdS5 cases, which is known to occur in many contexts.

One may ask what would happen for generic k′ with non-integer K = k/k′. The answer

depends on whether we deal with infinite or finite N1, N5. For infinitely large N1, N5, we

may be able to construct a vacuum arbitrary close to the dual of each geometry. For finite

N1, N5, we have a finite number of vacua, thus not all of the classical geometries have their

dual vacua. If we include quantum conditions to the gravity side, then only the geometries

with dual gauge theory vacua may be allowed.4

We conclude this subsection as follows. We may start from the vacuum dual to the

AdS3/Zk, which is labeled by the holonomies n1
I = N1/k and n5

I = N5/k for all I. This

vacuum is only meta-stable because other vacua have smaller Casimir energies. The vacuum

decays non-perturbatively into another vacuum dual to AdS3/Zk′ with a smaller k′, and

finally ends up with the trivial vacuum with n1
0 = N1 and n5

0 = N5, which is dual to pure

AdS3. The vacuum transition will be discussed in the next section for AdS5 case.

3Here we have assumed that N1 and N5 can be divided by k′, though the precise value is not relevant

for large N1, N5.
4See, for example, [13]. In their case the quantization of flux restricts the number of allowed geometry

and leads to one-to-one correspondence between geometries and gauge theory vacua.
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3. Decay of AdS5/Zk

As we saw in the previous section, the localized tachyon condensation on AdS3/Zk leads

to the decay of geometry in a quite analogous way to the decay of C/Zk. However, the

localized tachyon condensation on AdS5/Zk is quite different as discussed in [7]. In fact,

AdS5/Zk does not decay into AdS5 or the other orbifold of AdS5, because the boundary of

AdS5/Zk, i.e., Rt ×S3/Zk, cannot be the boundary of AdS5 or the AdS orbifold AdS5/Zk′

with k′ 6= k. The final geometry after the tachyon condensation was proposed in [8, 9] and

called as Eguchi-Hanson soliton.

The dual gauge theory description can be given by the Zk orbifold of N = 4 super

Yang-Mills on Rt ×S3. In particular, the Casimir energies of various vacua were computed

in [7], and it was found that the Casimir energies reproduce the masses of dual geometries

quite well. Similar results were obtained in [14] in slightly different configurations. In

the next subsection, we review the work of [7], which discuss the fate of localized tachyon

condensation on AdS5/Zk and its gauge theory description. This subsection is for the

preparation of subsection 3.2, where the transition between different vacua is discussed.

The transition is described by an instanton of the orbifold gauge theory on Rt×S3/Zk. We

construct instanton solutions by making use of the known instantons for the gauge theory

on Rt × S2 [15, 16].

3.1 Review of final geometry and dual gauge theory description

We consider type IIB superstring theory on AdS5 × S5 and construct the orbifold theory

with tachyonic modes at the fixed point. In the global coordinates the metric of AdS5 is

given by

ds2 = g(r)dt2 +
dr2

g(r)
+ r2dΩ3 , g(r) = r2 + 1 , (3.1)

where the AdS radius is set to be one and the metric of boundary geometry is

dΩ3 =
1

4

[

(dχ + cos θdφ)2 + dθ2 + sin2 θdφ2
]

. (3.2)

The variables run 0 ≤ θ ≤ π, 0 ≤ φ ≤ 2π, and 0 ≤ χ ≤ 4π. The identification in the

orbifold theory is performed by the shift along the χ-cycle as χ ∼ χ + 4π/k. Then the

orbifold action yields a fixed point at r = 0, and the system has tachyonic modes localized

at the fixed point, if we use even5 k and assign the anti-periodic boundary condition for

fermions along the χ-cycle.

5One may ask why k should be even contrary to the AdS3 case with odd k. This is related to the

topology of boundary geometry. The boundary of AdS3 is given by S1, and the cycle can be pinched off

at the center of AdS3 if we assign the anti-periodic boundary condition for fermions. This leads to the

condition of odd k for the orbifold theory. On the other hand, the boundary of AdS5 is S3, and there is

no cycle which we can go around. For this reason we can assign anti-periodic boundary conditions only for

even k such that fermions do not receive a phase factor when going around k times the cycle of S3/Zk.
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The geometry after the localized tachyon condensation is proposed in [8, 9], where they

called the geometry as Eguchi-Hanson soliton. The metric is given by

ds2 = g(r)dt2 +
dr2

g(r)f(r)
+

r2

4

[

f(r)(dχ + cos θdφ)2 + dθ2 + sin2 θdφ2
]

(3.3)

with

g(r) = r2 + 1 , f(r) = 1 − a4

r4
, a2 =

(

k2

4
− 1

)

, (3.4)

where k > 2 such that a2 > 0. The relation between a and k is fixed by assuming

the regularity of the geometry at r = a, and due to the lack of fixed point the Eguchi-

Hanson soliton does not have localized tachyons.6 The region of r < a is removed in the

Eguchi-Hanson soliton, and this region might be interpreted as the tachyon state, where

the tachyonic modes have non-trivial expectation values [17, 18]. We can check by taking

large r limit that this geometry has the same boundary geometry as that of AdS5/Zk,

whose metric is given by (3.2).

We can discuss the stability of background by comparing the masses of geometry

addition to examining the existence of tachyonic modes. The mass of the AdS orbifold

AdS5/Zk is just 1/k times that of AdS5, thus it is given by

M =
3π

32kG5
. (3.5)

The mass of Eguchi-Hanson soliton was computed in [8, 9] by adopting the same method

in subsection 2.1 as

M = −π(k4 − 8k2 + 4)

128kG5
. (3.6)

We can see that the mass of Eguchi-Hanson soliton is smaller than that of AdS5/Zk, and

hence the Eguchi-Hanson soliton can be thought as a final geometry.

The gauge theory dual to superstring theory on AdS5/Zk×S5 is given by N = 4 U(N)

super Yang-Mills theory on Rt × S3/Zk [13]. The radius of S3 is set to be one and N is

taken very large. We use the metric of Rt × S3/Zk as

ds2 = −dt2 +
1

4

[

(dχ + cos θdφ)2 + dθ2 + sin2 θdφ2
]

, (3.7)

where the theory is divided by the shift of 2π/k along the χ-cycle. Originally there is

no non-trivial cycle in the covering space S3, but the orbifold procedure leads to a non-

trivial cycle with π1(S
3/Zk) = Zk. Along the cycle, we can assign a holonomy matrix

V = P exp(−igYM

∮

Aχ) subject to V k = 1 as in the AdS3 case. The holonomy matrix can

be set as

V = diag(1, · · · , 1, ω, · · · , ω, · · · , ωk−1, · · ·ωk−1) , ω = exp
2πi

k
(3.8)

6It might be interesting to use a generic a to construct other geometry with an orbifold singularity at

r = a. It may serve as an intermediate geometry.
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with the help of U(N) gauge symmetry. Therefore, the vacua are labeled by k integers

(n0, · · · , nk−1) with
∑

I nI = N , where nI represents the number of ωI . Two specific vacua

among them are important for us. One is the vacuum with the Zk symmetric holonomy

nI = N/k for all I, which is dual to AdS5/Zk. The other is the vacuum with the trivial

holonomy n0 = N , which is dual to the Eguchi-Hanson soliton (3.3).

In [7] the spectrum of the orbifold gauge theory with the holonomy matrix was obtained

and the Casimir energy for the vacuum was computed at the one loop level. For the Zk

symmetric holonomy nI = N/k, the Casimir energy is given by

V0 = N2 3

16k
. (3.9)

With the relation N2 = π/(2G5) we can see that the Casimir energy exactly reproduces

the mass of AdS5/Zk (3.5). For the trivial holonomy n0 = N , the Casimir energy is

V0 = −N2

(

k3

48
− k

12
− 3

16k

)

, (3.10)

which is roughly 4/3 times the mass of the Eguchi-Hanson soliton (3.6). This is a remark-

able result since we have observed a quantitative correspondence between the results in

small and large ’t Hooft coupling limits. We can show that the Casimir energy for n0 = N

is smallest among the ones for every holonomies [7], and in this way we may say that the

Eguchi-Hanson soliton is really the final geometry after the decay of AdS5/Zk.

3.2 Gauge theory instanton

We have observed that the localized tachyon condensation deforms the background geom-

etry from AdS orbifold into another more stable geometry. In particular, the dynamics

of the geometry transition for AdS3 case have been analyzed by constructing a numerical

gravity solution describing the decay of AdS3/Zk in subsection 2.2. In this subsection, we

would like to discuss the dynamics of the transition from the viewpoint of the dual gauge

theory. Each geometry corresponds to a vacuum of dual gauge theory, thus the transition of

geometry should be described by the transition between different vacua, i.e., the instanton

interpolating vacua. We focus on the orbifold gauge theory on Rt × S3/Zk since we have

a lot of knowledge about instantons in four dimension.

We would like to construct instantons which interpolate vacua at τ = −∞ and other

vacua at τ = ∞ with the Euclidean time τ = it. We only analyze in the semi-classical

limit, where all the vacua are degenerated, and in this limit it is enough to excite only the

gauge field. For this reason we consider SU(N) pure Yang-Mills theory, whose action is

given by

S =
1

4

∫

d4x
√

g4FµνFµν , (3.11)

where the field strength is defined as

Fµν = ∂µAν − ∂νAµ + igYM[Aµ,Aν ] . (3.12)
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We denote the Yang-Mills coupling constant as gYM, which is assumed to be very small.

The gauge theory is defined on Rt × S3/Zk, whose metric is given by

ds2 = dτ2 +
1

4

[

(dχ + cos θdφ)2 + dθ2 + sin2 θdφ2
]

(3.13)

with 0 ≤ θ ≤ π, 0 ≤ φ ≤ 2π, and 0 ≤ χ ≤ 4π/k as before. In particular, the measure is

given by d4x
√

g4 = 1
8 sin θdτdχdθdφ.

In order to obtain instanton solutions, it is useful to rewrite the above action as

S =
1

8

∫

d4x
√

g4 [(Fµν ∓ ∗Fµν)(Fµν ∓ ∗Fµν) ± 2Fµν ∗ Fµν ] (3.14)

as usual. The Hodge dual is given by

∗Fµν =

√
g4

2!
ǫµνρσFρσ , ∗Fµν =

1

2!
√

g4
ǫµνρσFρσ (3.15)

in a curved space. The second term of (3.14) corresponds to a topological contribution.

Within the same topological sector, the minimum of the action is given by the solutions to

the (anti-)self-dual equation of field strength

Fµν = ± ∗ Fµν . (3.16)

The solutions to the equation are the (anti-)instantons of the orbifold gauge theory.

We try to find out solutions to the (anti-)self-dual equations. One easy guess is to

utilize the ’t Hooft instanton, but this type of instantons do not interpolate the vacua of

our type.7 Therefore we should look for other type of solution. The main idea is as follows.

Just like monopole solutions do not depend on time coordinate, we assume the coordinate

independence along the χ direction. Then we can perform the dimensional reduction along

the χ direction, and the theory is reduced to the one on Rτ × S2.8 Instanton solutions of

the gauge theory on Rτ × S2 were obtained in [15, 16] (see also [20]), thus we can obtain

instantons on Rτ × S3/Zk by making use of the results on Rτ × S2.

The dimensional reduction in this case is a little bit subtle since S3 consists of a non-

trivial S1 fibration over S2. Using the standard technique of Kaluza-Klein dimensional

reduction, the gauge field on Rτ × S2 can be defined as [13]

Aµdxµ = Amdxm + Φ(dχ + cos θdφ) (3.17)

with m = τ, θ, φ. After the integration over the χ direction, we obtain the new action for

the redefined gauge field as

S =
4π

k

∫

d3x
√

g3

[

F 2
τθ +

4

sin2 θ
(Fθφ − Φ sin θ)2 +

1

sin2 θ
F 2

τφ + DmΦDmΦ

]

, (3.18)

7This type of instantons can be constructed by the orbifold images of the ’t Hooft instantons mapped on

Rτ ×S3. These instantons have the topological charge Z/k and are dual to fractional instantons localized at

the fixed point of AdS orbifold. In particular, the sum of all types of fractional instantons should reproduce

the bulk instanton.
8The relation between gauge theories on Rt × S3/Zk and on Rt × S2 was also discussed in [19].
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where the field strength and the covariant derivative are

Fmn = ∂mAn − ∂nAm + igYM[Am, An] , DmΦ = ∂mΦ + igYM[Am,Φ] . (3.19)

The index is raised in (3.18) by the metric of Rτ × S2

ds2 = dτ2 +
1

4

[

dθ2 + sin2 θdφ2
]

, (3.20)

and the measure in this case is given by d3x
√

g3 = 1
4 sin θdτdθdχ.

The second term of (3.18) acts important roles on the gauge theory on Rτ × S2. This

term arises through the non-trivial relation Fθφ = Fθφ − Φ sin θ + (DθΦ) cos θ, where the

contribution from (DθΦ) cos θ does not appear in the final form. Because of the form of

complete square, we can see that the vacuum of this gauge theory is labeled by Φ = f with

the notation Fθφdθdφ = f sin θdθdφ. Through the relation (3.17) the holonomy matrix

V = P exp(−igYM

∮

Aχ) of (3.8) is mapped to the configuration

Φ = f =
1

gYM
(0, · · · , 0, 1, · · · , 1, · · · , k − 1, · · · , k − 1) , (3.21)

where the number of I = 0, · · · , k − 1 is given by nI defined above.

Let us focus on the instanton case. Then the problem is now to find out solutions to

the self-dual equation (3.16) in terms of gauge field of the three dimensional theory (3.17).

For SU(2), the general solutions were constructed in [15]. For SU(N) with general N it was

pointed out in [16] that the general solutions can be deduced from the ones in the plane

wave matrix model [21] obtained in [22]. Given a solution to the self-dual equation (3.16),

the action can be written as

S =
1

4

∫

d4x
√

g4Fµν ∗ Fµν =
4π

k

∫

dτdθdφ [DτΦ(Fθφ − Φ sin θ) + FτθDφΦ − FτφDθΦ]

=
2π

k

∫

dτdθdφ sin θDτΦ
2 =

2π

k

∫

dθdφ sin θ
[

Φ2|τ=∞ − Φ2|τ=−∞

]

(3.22)

with the help of Bianchi identity DτFθφ + DθFφτ + DφFτθ = 0 [15]. At the initial time

τ = −∞ and the finial time τ = ∞, the system must be at one of the vacua labeled by the

integers (3.21). Thus the action is evaluated as9

S =
8π2

kg2
YM

[

k−1
∑

I=0

nII
2|τ=∞ −

k−1
∑

I=0

nII
2|τ=−∞

]

. (3.23)

The possible interpolations of vacua were discussed in [16] by using the results of [23].

In the dual gravity description, the amplitude P ∼ exp(−S) may be interpreted as the

transition probability between geometries in the small AdS radius limit l → 0.

9More generic instanton solutions may be obtained from the vacua with Φ = f = 1/gYM(l1, · · · , lN ),

where li ∈ Z is not restricted to the range 0 ≤ li < k. Even for these generic vacua, we can construct

instantons on Rτ × S2 and therefore on Rτ × S3/Zk as well by utilizing the map of vacua. If we want

to use the range 0 ≤ li < k − 1 for Aχ = 1/gYM(l1, · · · , lN ), then we just have to perform large gauge

transformations.
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4. Conclusion and discussions

In this paper we have investigated the condensation of localized closed string tachyons

in AdS orbifolds and its dual gauge theory description from the viewpoint of AdS/CFT

correspondence. The orbifolds of AdS space have fixed points at the center and we can

construct configurations with tachyonic modes localized at the fixed points. The conden-

sation of localized tachyon leads to the decay of AdS orbifolds into more stable geometries.

The dual theories are given by orbifold gauge theories, and vacuum transitions of gauge

theory correspond to geometry transitions of dual gravity theory.

As explicit examples, we have considered the orbifolds of AdS3 and AdS5 in type IIB

superstring theory. First we have studied the localized tachyon condensation of AdS3/Zk

with odd k. The tachyon condensation leads to AdS3/Zk′ with a smaller odd k′ and

finally to pure AdS3. Assuming that the effect of localized tachyon condensation induces a

dilaton pulse, we have constructed numerically a graviton-dilaton solution describing the

decay. The dual gauge theory description has been analyzed, and remarkably the Casimir

energies are found to be the same as the masses of dual geometries. Then we move to the

case of AdS5/Zk, where the AdS orbifold decays into Eguchi-Hanson soliton [8, 9] after

the localized tachyon condensation. The gauge theory vacua dual to these geometries may

have holonomies along the non-trivial cycle, and we have constructed instanton solutions

interpolating different vacua as non-perturbative transitions.

There are many interesting points to be investigated furthermore. As for the dynamics

of the tachyon condensation in the gravity description, we could follow the time evolution

before the dilaton pulse reaches the boundary. It is interesting to see how the solution be-

haves at the quite late time when the effects of boundary are significant. It is also true that

the geometry changes can be induced both by the condensation of tachyonic mode as per-

turbative effects of string theory and also by gravitational instantons as non-perturbative

effects. The localized tachyon condensation has been discussed in subsection 2.2, but the

non-perturbative transition has not been analyzed yet. This should be described by a

gravitational instanton which interpolate AdS3/Zk at τ = −∞ to AdS3/Zk′ at τ = ∞. It

is also important to analyze the AdS5 case since the story is quite different from the AdS3

case.

In the gauge theory description, the dynamics of vacuum transition for (1+1) orbifold

gauge theory is left to be analyzed. However, we expect to obtain more insights by studying

deeply about the orbifold gauge theory on Rt×S3/Zk. We have examined non-perturbative

effects in the gauge theory description, but one may ask how to see the effect of localized

tachyon condensation in this side. It is actually a very difficult question as mentioned

in [2] because we are considering in the different regime of ’t Hooft coupling. The localized

tachyon condensation has been investigated from the viewpoint of dual gauge theory in [24 –

26], but it is fair to say that no clear picture has been obtained yet. The investigation in

our configuration might give a clue since we know the end point of tachyon condensation.

One of the main results of this paper is to extend the analysis of AdS5 case in [7] into

the AdS3 case. In fact, the AdS3 case could be more interesting since we can solve string

theory on AdS3 with NSNS-flux and go beyond the classical limit. For example, we can

– 17 –



JH
E

P
0

9
(2

0
0

7
)0

2
1

construct localized tachyons explicitly as in [27, 28], and it is also possible to analyze them

from the viewpoint of dual CFT. Moreover, it is worthwhile trying to follow the RG flow of

worldsheet theory in AdS3/Zk, since the worldsheet RG flow leads important developments

on the localized tachyon condensation [2, 29]. Tachyon condensations in string theory on

AdS3 have been also discussed recently in [30 – 32] in different contexts.
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